Activation of the binuclear metal center through formation of phosphotriesterase-inhibitor complexes.

نویسندگان

  • Cynthia R Samples
  • Frank M Raushel
  • Victoria J DeRose
چکیده

Phosphotriesterase (PTE) from Pseudomonas diminuta is a binuclear metalloenzyme that catalyzes the hydrolysis of organophosphate nerve agents at rates approaching the diffusion-controlled limit. The proposed catalytic mechanism postulates the interaction of the substrate with the metal center and subsequent nucleophilic attack by the bridging hydroxide. X-band EPR spectroscopy was utilized to monitor the active site of Mn/Mn-substituted PTE upon addition of two inhibitors, diisopropyl methyl phosphonate and triethyl phosphate, and the product of hydrolysis, diethyl phosphate. The effects of inhibitor and product binding on the magnetic properties of the metal center and the hydroxyl bridge were evaluated by measuring changes in the features of the EPR spectra. The EPR spectra support the proposal that the binding of substrate analogues to the binuclear metal center diminishes the population of hydroxide-bridged species. These results, in conjunction with previously published kinetic and crystallographic data, suggest that substrate binding via the phosphoryl oxygen at the beta-metal weakens the coordination of the hydroxide bridge to the beta-metal. The weakened coordination to the beta-metal ion increases the nucleophilic character of the hydroxide and is coupled to the increase in the electrophilic character of the substrate.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self-assembly of the binuclear metal center of phosphotriesterase.

The active site of the bacterial phosphotriesterase (PTE) from Pseudomonas diminuta contains two divalent metal ions and a carboxylated lysine residue. The native enzyme contains two Zn(2+) ions, which can be replaced with Co(2+), Cd(2+), Ni(2+), or Mn(2+) without loss of catalytic activity. Carbon dioxide reacts with the side chain of lysine-169 to form a carbamate functional group within the ...

متن کامل

Structure of diethyl phosphate bound to the binuclear metal center of phosphotriesterase.

The bacterial phosphotriesterase (PTE) from Pseudomonas diminuta catalyzes the hydrolysis of organophosphate esters at rates close to the diffusion limit. X-ray diffraction studies have shown that a binuclear metal center is positioned in the active site of PTE and that this complex is responsible for the activation of the nucleophilic water from solvent. In this paper, the three-dimensional st...

متن کامل

Is Required for the Assembly of the Binuclear Metal Center of Phosphotriesterase

Phosphotriesterase from Pseudomonas diminuta is a zinc metalloenzyme that catalyzes the hydrolysis of a broad spectrum of organophosphate triesters, including the pesticides paraoxon and parathion.' Although the natural biological substrate for the phosphotriesterase has not yet been identified, the enzyme has received considerable attention because it is also capable of hydrolyzing chemical wa...

متن کامل

Phosphorus-31 Nmr Relaxation Studies of Diethyl P- Methoxyphenyl Phosphate Bound to Phosphotriesterase

The effect of MnZ÷/Mn 2÷, Mn2÷/Zn 2÷ and ~VIn2+]Cd 2÷ reconstituted phosphotriesterase on the 3~p spin lattice (1/Tx) relaxation rate of diethyl p-methoxyphenyl phosphate has been investigated. In the presence of MnZ÷/Mn 2+ phosphotriesterase, the spin lattice relaxation rate of the phosphorus atom is enhanced giving an upper limit for the phosphorus-metal root mean-sixth average distance of 4....

متن کامل

Three-dimensional structure of the zinc-containing phosphotriesterase with the bound substrate analog diethyl 4-methylbenzylphosphonate.

Phosphotriesterase from Pseudomonas diminuta catalyzes the hydrolysis of paraoxon and related acetylcholinesterase inhibitors with rate enhancements that approach 10(12). The enzyme requires a binuclear metal center for activity and as isolated contains 2 equiv of zinc per subunit. Here we describe the three-dimensional structure of the Zn2+/Zn2+-substituted enzyme complexed with the substrate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemistry

دوره 46 11  شماره 

صفحات  -

تاریخ انتشار 2007